Introduction to Mathematics and Modeling

lecture 2
First order differential equations

academic year : 18-19
lecture : 2
build : February 4, 2019
slides : 20

UNIVERSITY OF TWENTE.
This week

1. Section 7.2: separable differential equations
2. Section 9.4: autonomous differential equations
A **separable differential equation** is an equation of the form

\[
\frac{dy}{dx} = f(x)g(y)
\]

Solution method:

1. Separate the equation:
 \[
 \frac{1}{g(y)} \, dy = f(x) \, dx.
 \]

2. Then integrate:
 \[
 \int \frac{1}{g(y)} \, dy = \int f(x) \, dx.
 \]

3. (If possible) solve for \(y \).
Example 1

\[
\frac{dy}{dx} = (1 + y)e^x, \quad y > -1
\]

- Separate:
- Integrate:
- Solve \(y \):
Example 2

\[\frac{dy}{dx} = -\frac{x}{y} \]
Separable differential equations: example 2

\[
\frac{dy}{dx} = -\frac{x}{y}
\]

- Separate:
- Integrate:
- Solve \(y \)?
A system is subject to **exponential change** if it is described by the differential equation

\[y' = \alpha y \]

where \(\alpha \) is a constant.

- If \(\alpha > 0 \) then we the system is subject to **exponential growth**.
- If \(\alpha < 0 \) then we talk about **exponential decay**.
- The differential equation is separable.
Exponential change

\[\frac{dy}{dx} = \alpha y. \]

- Separate:

- Integrate:

- Solve \(y \):

UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 2: First order differential equations
Exponential change

\[
\frac{dy}{dx} = \alpha y \quad \Rightarrow \quad |y| = M e^{\alpha x}, \quad M > 0.
\]

- Since \(|y|\) is either \(+y\) or \(-y\), we can replace this equation by

\[
y = L e^{\alpha x},
\]

where \(L = \pm M\) is a non-zero constant.

- Separation fails to find the solution \(y(x) = 0\), but it certainly is a solution, so if we define \(K = L\) or \(K = 0\) then

\[
y(x) = K e^{\alpha x}, \quad K \in \mathbb{R}.
\]

- The constant \(K = y(0)\) is the initial value of \(y\):

\[
y(x) = y(0) e^{\alpha x}.
\]
Exponential change

\[y' = \alpha y, \quad \alpha > 0 \]

Exponential growth

\[y' = \alpha y, \quad \alpha < 0 \]

Exponential decay
An **autonomous differential equation** is a differential equation of the form

\[y' = f(y) \]

- The slope field does not depend on \(x \).
- Along horizontal lines all line segments have the same slope.
- Solution curves can be shifted in horizontal direction.
- If \(y(x) \) is a solution, then \(y(x + C) \) is also a solution.
- If \(x \) represents time:

 Solutions of autonomous differential equations are **time independent**.
Example

\[\frac{dy}{dx} = (y + 1)(y - 2) \]
Example

\[
\frac{dy}{dx} = (y + 1)(y - 2)
\]
Solution curves of autonomous differential equations can be sketched qualitatively with just a few computations.

1. **Find the equilibrium solutions:** solve \(f(y) = 0 \) for \(y \).

2. **Draw a phase line:**
 - On the \(y \)-axis mark the values for which \(f(y) = 0 \).
 - Identify the intervals where \(f(y) > 0 \) (with an arrow pointing upward: ↑) and \(f(y) < 0 \) (with an arrow pointing downward: ↓).

3. **Sketch some solutions in the \(xy \)-plane.**

The book also computes the sign of \(y'' \) to determine convexity of solutions. You don’t have to be able to do this!
Example 1

\[\frac{dy}{dx} = (y + 1)(y - 2) \]
- Phase lines can also be drawn horizontally.
- If \(f(y) = 0 \), then \(y \) is an equilibrium point.
- If \(f(y) > 0 \), draw an arrow pointing to the right: \(\rightarrow \), and \(f(y) < 0 \) draw an arrow pointing leftward: \(\leftarrow \).
An equilibrium is called **asymptotically stable** if the arrows point towards the equilibrium point.

An equilibrium is called **unstable** if the arrows away from the equilibrium point.

If $f'(y_0) < 0$, then the equilibrium y_0 is stable, and if $f'(y_0) > 0$, then the equilibrium y_0 is unstable.
Example 2

\[\frac{dy}{dx} = y^2 - 4 \]
Example 2

\[\frac{dy}{dx} = y^2 - 4 \quad \Rightarrow \quad f(y) = y^2 - 4 \]

The equilibrium points are \(-2\) and \(2\).

- \(f'(y) = \)
- \(f'(-2) = \)
- \(f'(2) = \)
Example 2

\[
\frac{dy}{dx} = y^2 - 4 \quad \Rightarrow \quad f(y) = y^2 - 4
\]

- The equilibrium points are -2 and 2.

- $f'(y) =$

- $f'(-2) =$

- $f'(2) =$
Example 2

\[
\frac{dy}{dx} = y^2 - 4 \implies f(y) = y^2 - 4, \quad f'(y) = 2y.
\]

- The equilibrium points are \(-2\) and \(2\).

- \(f'(y) = \)

- \(f'(-2) = \)

- \(f'(2) = \)
■ $u(t)$ is the voltage over the capacitor.

■ From Ohm's law one derives the following differential equation:

$$RC\ u' + u = V(t)$$

■ If $V(t) = V_B$ is constant then the equation is autonomous.
\[RC \, u' + u = V_B \quad \Rightarrow \quad u' = \frac{V_B - u}{RC} \]

- \(f(u) = \frac{V_B - u}{RC} \), the equilibrium solution is \(u = V_B \).

- \(f'(V_B) = -\frac{1}{RC} < 0 \), the equilibrium \(V_B \) is stable.